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Motivation &
Goals

Motivation:
Accurate carbon flux estimation from

inversion needs far more CO2
observations than current surface
obs can provide.

Goals:

1. Generate global CO2 map every 6-
hour; start with AIRS, then GoSat

2. Propagate AIRS CO2 in both
horizontal and vertical direction
through data assimilation and
transport model

AIRS CO2 at 18Z01May2003 (+/-3hour)�



Outline
• CO2 simulation in Community Atmospheric

Model 3.5 (CAM 3.5)

• Methods to assimilate AIRS CO2 with
Ensemble Kalman Filter (EnKF)

• Preliminary results

• Summary and future plans



CO2 simulation in CAM3.5
• Community Atmospheric Model 3.5 (CAM 3.5) coupled

with Community Land Model 3.5 (CLM 3.5)
– Finite Volume dynamical core
– 2.5°x1.9° horizontal resolution, with 26 vertical levels up to

3.5hPa.
• CO2 is transported as a tracer in CAM 3.5
• Carbon flux forcing

– Fossil fuel emission (yearly average value in 2003)
– Ocean C flux (changes with month; Takahashi et al., 2002)
– Land C flux (changes with month; CASA annually balanced flux

from Transcom 3)
• Four-year model integration started from 01Jan 2000



• Seasonal cycle simulation is pretty good even though the flux is not perfect.

• N-S model gradient is smaller than observations, similar to Engelen at al.
2008.

Model: black ;
obs:green

CO2 seasonal cycle mean north-south CO2 gradient

Model: solid ;
obs: dashed line;
red: year 2002;
black: year 2003.

Comparison between model simulation and
observations
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Ensemble Kalman Filter
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   is the observation operator, which interpolates model
forecast to observation space (more details later);
h(!)



CO2 observation operator

yb = h(xb ) = AT (Hxb ) = a
i
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xb : model forecast CO2  vertical profile; 

k: the total vertical levels; H: spatial interpolation operator;

yb : model predicted CO2  column mixing ratio. 

A: averaging kernel; a
i
 is the element at ith vertical level;

• Model forecast xb is CO2 vertical profile;

• AIRS CO2 is weighted column Volume Mixing Ratio (vmr);

=> observation operator: interpolate xb to obs location & calculate
model forecast weighted column CO2 vmr based on CO2 profile.



Averaging kernel for 370ppm
(black: 90º; red: 45º; green: 0º)

1. Interpolate averaging kernels based on CO2(base)

2. Linearly Interpolate among latitudes ;
3. Normalize the interpolated averaging kernels, i.e., sum(A)=1.0

CO
2(base)

(time=t)=371.92429+1.840618*(t-t0), where t0=00ZJan1, 2002;

Averaging Kernel
Averaging kernel for 390ppm

(black: 90º; red: 45º; green: 0º)



CO2 assimilation method
• AIRS CO2 observation is a column weighted value;
• Model forecast CO2 state xb and analysis state xa are vertical profiles;
=> How to localize CO2 column observation to obtain CO2 vertical profile?

!yi
o" = ai # (yo $ h(xb ));  localize the column observation increment to ith

vertical level by the ith averaging kernel element ai

!yj ,i
b " = ai # h(x j

b );  localize the jth  ensemble forecast column CO2  to the ith

vertical level by the ith  averaging kernel element ai



AIRS CO2 observations

• Some outliers in the AIRS CO2 observations (may not mean bad quality).

• Need some quality control before assimilating these obs.

00Z02May, 2003 +-3hour



Quality control of AIRS CO2
observations

Buddy check: compare each observation to the mean of the
observations within 400km.

Bad observations: absolute difference larger than 5ppm; filter
out about 8%.

Before buddy check After buddy check
00Z02May, 2003 +-3hour



350 hPa CO2 analysis increment (ppm)

Single CO2 analysis step
CO2 at 00Z01May2003 (+3hour) after QC

• Analysis increment= analysis-background forecast

• Spatial pattern of analysis increment follows the observation coverage.

• Propagate observation information horizontally.



CO2 analysis increment vertical profile

Along 5ºw

• The magnitude of analysis increments in vertical direction
follows the shape of averaging kernel.



Meteorological run CO2 run
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• No constraints on CO2 in meteorological run;

• AIRS CO2 constrains CO2 vertical profile in CO2 run.

Experimental design



CO2 difference between CO2 run and
meteorological run

1. Adjustment by AIRS CO2 spans from 800hPa to 100hPa

2. The adjustment is larger in the NH

Unit: ppm



Fitting to AIRS CO2 obs
Green: meteorological run;

Red: 6-hour forecast from CO2 run; black: analysis from CO2 run

Fitting to the AIRS CO2 observations has been much improved
in CO2 run.

NH SH



Summary
• CO2 seasonal cycle is well simulated by CAM3.5,

but N-S gradient is weaker;

• Proposed a procedure to assimilate AIRS CO2
retrievals with ensemble Kalman filter;

• Assimilation and transport model propagate the
AIRS CO2 observation in both horizontal and vertical
directions.

• As expected, CO2 column mixing ratio from CO2 run
is closer to AIRS CO2 retrievals than that from
meteorological run.



Future plans
• Extend the length of assimilation and use more

accurate averaging kernel.

• Compare the results to in-situ CO2 observations, e.g.,
aircraft data.

• Develop more sophisticated QC.

• Explore multivariate CO2 data assimilation.

• Use carbon flux predicted by the online CASA model.

• Based on the simulated experiments of Ji-Sun Kang
(UMD), ultimately, estimate carbon flux based on
AIRS CO2 data and GOSAT CO2 data


